
Timothy McIntire 

CS 499 

Professor Bryant (Professor Hawk) 

May 25, 2025 (revised June 18, 2025) 

 

Milestone Two Narrative 

 

1. Briefly describe the artifact. What is it? When was it created? 

The artifact I enhanced is my final project from IT 145: Foundations in Application 

Development, developed in early 2023. The original project is a Java-based command-line 

application simulating an animal intake and reservation system for a fictional rescue 

organization, Grazioso Salvare. Initially, the application only supported two animal types—dogs 

and monkeys—each hardcoded as their own classes. A single Driver class handled all logic, 

including intake, search, reservation, and listing of animals. 

 

2. Justify the inclusion of the artifact in your ePortfolio. Why did you select this item? 

What specific components showcase your skills and abilities in software development? How 

was the artifact improved? 

I selected this artifact because it represents a foundational project in my Computer 

Science journey, and it provides a perfect platform to showcase my growth in software 

engineering and modular design. The original code was functional but limited in flexibility and 

maintainability. By enhancing it, I was able to demonstrate advanced object-oriented 

programming (OOP) skills, including: 



• Abstraction by refactoring the RescueAnimal class into an abstract superclass 

• Inheritance by creating six new animal “kingdom” classes (Mammal, Bird, Reptile, 

Amphibian, Fish, Other) 

• Encapsulation through proper use of private fields and public getters/setters 

• Modular design by eliminating duplicate menu logic and using polymorphism for 

handling all animal types 

I also improved scalability by replacing the species-specific class structure (e.g., Dog, Monkey) 

with broader kingdom classes that allow flexible animal entry without changing the program 

structure. A new family field allows separation of animals like dogs, cats, monkeys, etc., within 

each kingdom. Furthermore, I implemented a new ID system using prefixes (like MAM001, 

BIR001) that ensures each animal has a unique and scalable identifier. 

 Additionally, as part of improving security and reliability, I began analyzing potential 

vulnerabilities in my program design. For example, I recognized that relying solely on text-based 

user input without strict validation could allow malformed entries—such as negative ages, blank 

fields, or duplicate IDs. While I implemented basic validation (ensuring unique IDs and parsing 

numeric values), I also plan to expand this by introducing regular expression checks, range 

validation for physical attributes (like weight), and more robust error handling. These steps lay a 

foundation for future enhancements, including sanitization techniques to mitigate injection 

attacks in later database-connected versions. 

 

3. Did you meet the course outcomes you planned to meet with this enhancement in Module 

One? Do you have any updates to your outcome-coverage plans? 

Yes, I fully met the course outcomes I planned for Category One. These include: 



• CO1 (Collaborative Software Design): I applied modular OOP principles to create a 

scalable and maintainable system. The code is now easy to understand, extend, and 

collaborate on. 

• CO3 (Computing Solutions and Design Choices): I redesigned the class hierarchy to 

simplify future enhancements and clearly manage trade-offs between flexibility and 

complexity. 

• CO5 (Secure and Reliable Systems): I began implementing input validation for key fields 

and structured the program to prevent duplicate or invalid animal entries. 

There are no updates needed to my original plan. The enhancements have laid a strong 

foundation for the next two categories: data structure optimization and database integration. 

 

4. Reflect on the process of enhancing and modifying the artifact. What did you learn as 

you were creating it and improving it? What challenges did you face? 

Enhancing this artifact taught me a great deal about designing for scalability and 

maintainability. I realized how limiting it was to create new hardcoded classes for each animal 

type, and how much more powerful it is to use abstract classes and polymorphism. 

The biggest challenges were: 

• Managing complexity while refactoring: As I removed the species-specific classes and 

restructured the hierarchy, I had to ensure nothing broke in the intake or reservation 

process. 

• Ensuring consistent user experience: I redesigned the menu system to be clean, logical, 

and easily extendable as new animal types are added. 



• ID generation and input validation: I added scalable IDs and began enforcing valid input 

formats (ensuring reserved status is boolean and age is a number). However, I also 

reflected on how vulnerabilities could arise if stricter validation isn't enforced, like 

accepting empty names or improperly formatted fields. To address this moving forward, I 

plan to incorporate regex-based field validation, enforce character constraints, and 

eventually centralize input sanitization logic to improve reliability and reduce the risk of 

unexpected behavior. 

These changes significantly improved the quality of the system and demonstrated my growing 

understanding of clean architecture, OOP, and real-world software design principles. 

 

Conclusion 

This milestone demonstrates my ability to refactor and improve a previously basic system 

using modern software engineering practices. The new version is cleaner, more modular, and 

prepared for future enhancements in performance and data persistence. I’m confident that this 

work aligns with industry expectations for scalable, professional software systems and directly 

supports my career goal of becoming a software developer or engineer. 


